Product Description

235 32K Excavator Coupling Machine Parts Track Pin Press Flexible Coupling 

 

Basic information:

 

Model: 235 32K

Used on:Excavator, Air Compressor, Marine Machine

Packing: Plastic Bag, Carton

Coupling Type: Coupling Inserts

Material: Rubber, Iron

Payment Methods: Bank Transfer, Western Union, Money Gram, Credit

Coupling Structure: Helical Coupling

Supply Ability: 3000PCS Per Week

After-sales Service: Online Support

Coupling Structure: Helical Coupling
 

Products Parts:

Pos. Part No Qty Parts name
1. 9K-3115 [1] HEAD
2. 3P-1388   LOCKWIRE 7.62 dm(30 in.)
3. 2B-2955 [4] BOLT
4. 5K-1787 [1] SEAL
5. 7J-3322 [1] SEAL
6. 9K-3307 [1] PISTON
7. 9K-3304 [1] SEAL
8. 9K-9716 [1] HOUSING
9. 8S-2332 [4] BOLT
10. 9K-3148 [1] SHAFT
11. 8K-0507 [4] DISC
12. 8K-0509 [5] PLATE
13. 9M-5571 [1] SEAL
14. 9K-9715 [1] ADAPTER ASSEM.
15. 4D-0672 [2] DOWEL
16. 5J-2383 [1] SEAL
17. 8K-0508 [2] SPRING
18. 8K-571 [2] RETAINER
19. 1D-4623 [4] BOLT
  5H-1504 [4] WASHER
20. 9K-3145 [4] BOLT
21. 9K-3305 [1] WASHER
22. 6B-3645 [1] SNAP RING
23. 4F-8824 [1] SEAL
24. 8K-2004 [1] SHAFT

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.

 

And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!

Products Show:

FAQ

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: Six Months
Type: Coupling
Application: Excavator
Certification: CE
Condition: New
Customization:
Available

|

Customized Request

China Good quality 235 32K Excavator Coupling Machine Parts Track Pin Press Flexible Coupling

pin coupling

How Do Pin Couplings Compare to Other Types of Couplings in Terms of Performance?

Pin couplings offer certain advantages and disadvantages compared to other types of couplings, and their performance characteristics can vary depending on the specific application requirements. Below is a comparison of pin couplings with some commonly used couplings:

1. Gear Couplings:

  • Flexibility: Gear couplings are more rigid than pin couplings and may not offer the same level of misalignment capacity.
  • Torsional Stiffness: Gear couplings provide higher torsional stiffness, making them suitable for applications requiring precise torque transmission.
  • Shock Absorption: Gear couplings can handle higher shock loads due to their robust design and greater stiffness.
  • Maintenance: Gear couplings may require periodic lubrication and maintenance compared to maintenance-free pin couplings.
  • Applications: Gear couplings are commonly used in heavy-duty and high-torque applications where precise torque transmission is essential.

2. Flexible (Elastomeric) Couplings:

  • Flexibility: Elastomeric couplings offer higher misalignment capacity than pin couplings and can handle angular, parallel, and axial misalignment.
  • Shock Absorption: Elastomeric couplings provide excellent shock absorption, damping vibrations, and protecting connected equipment.
  • Torsional Stiffness: Elastomeric couplings have lower torsional stiffness compared to pin couplings, making them more forgiving in high shock load applications.
  • Installation: Elastomeric couplings are easy to install and require no lubrication, making them maintenance-free.
  • Applications: Elastomeric couplings are commonly used in pumps, compressors, and other machinery where vibration isolation is crucial.

3. Rigid Couplings:

  • Torsional Stiffness: Rigid couplings provide high torsional stiffness, ensuring accurate torque transmission.
  • Misalignment Capacity: Rigid couplings have little to no misalignment capacity and require precise shaft alignment.
  • Applications: Rigid couplings are used in applications where precise alignment is essential, such as shaft-to-shaft connections in high-precision systems.

Conclusion:

Pin couplings strike a balance between flexibility and torsional stiffness, making them suitable for applications with moderate misalignment and shock loads. They are often used in general industrial applications, conveyors, and light to medium-duty machinery.

When selecting a coupling for a specific application, it is crucial to consider factors such as misalignment requirements, shock and vibration loads, torsional stiffness, maintenance needs, and the level of precision required. Each coupling type has its strengths and weaknesses, and the appropriate choice will depend on the specific demands of the application.

pin coupling

How Does a Pin Coupling Handle Angular, Parallel, and Axial Misalignment?

A pin coupling is designed to handle different types of misalignment, including angular, parallel, and axial misalignment. The unique construction of pin couplings allows them to accommodate these misalignments without compromising the efficiency and performance of the connected equipment.

1. Angular Misalignment: Angular misalignment occurs when the axes of the driving and driven shafts are not parallel but intersect at an angle. Pin couplings can tolerate angular misalignment because of their flexible and floating pin design. The two coupling halves are connected by a series of pins, which can pivot and move within the pin holes. This flexibility allows the coupling to bend slightly, adjusting to the angle of misalignment between the shafts.

2. Parallel Misalignment: Parallel misalignment happens when the axes of the driving and driven shafts are parallel, but they are laterally displaced from each other. Pin couplings can handle parallel misalignment to some extent due to the floating nature of the pins. The pins can move laterally within the pin holes, allowing the coupling to adapt to the offset between the shafts.

3. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the axis of one shaft concerning the other. While pin couplings primarily focus on handling angular and parallel misalignment, they may offer limited axial misalignment capabilities. The floating pins provide a small degree of axial movement, but excessive axial misalignment is best avoided to prevent additional stresses on the coupling.

It is important to note that while pin couplings can accommodate some degree of misalignment, excessive misalignment should be avoided to prevent premature wear and potential failure of the coupling and connected equipment. Regular inspection and maintenance can help identify and address any misalignment issues, ensuring the optimal performance and longevity of the pin coupling in power transmission applications.

pin coupling

Limitations and Disadvantages of Using Pin Couplings

While pin couplings offer various advantages and are suitable for many applications, they also have some limitations and disadvantages to consider:

  • Misalignment Restrictions: Pin couplings can accommodate a certain degree of misalignment, but excessive misalignment can lead to increased wear and stress on the coupling components. They are not as effective at handling large angular or parallel misalignments compared to other flexible couplings like gear or elastomeric couplings.
  • Less Damping Capacity: Pin couplings have limited damping capacity, which means they may not effectively absorb and reduce vibrations in the system. In applications where vibration damping is critical, elastomeric or flexible couplings may be more suitable.
  • Noisy Operation: The rigid nature of pin couplings can lead to increased noise during operation, especially at high speeds or in applications with significant misalignment. This noise can be a concern in environments where noise levels need to be minimized.
  • Higher Maintenance: Compared to maintenance-free couplings like certain types of elastomeric couplings, pin couplings may require more frequent inspection and maintenance. The pins and other components may experience wear over time and need replacement.
  • Environmental Limitations: Some pin couplings may not be suitable for use in corrosive or high-temperature environments, depending on the materials used. Stainless steel or other corrosion-resistant materials can help mitigate this limitation.
  • Size and Weight: In certain applications, the size and weight of pin couplings may be larger and heavier compared to other types of couplings. This can be a consideration in applications where weight is a concern or space is limited.

Despite these limitations, pin couplings remain a popular choice for many applications where their advantages, such as simplicity, durability, and cost-effectiveness, outweigh their disadvantages. It is crucial to carefully assess the specific requirements of the application and consider factors like misalignment, vibration, maintenance needs, and environmental conditions when selecting a coupling type.

China Good quality 235 32K Excavator Coupling Machine Parts Track Pin Press Flexible Coupling  China Good quality 235 32K Excavator Coupling Machine Parts Track Pin Press Flexible Coupling
editor by CX 2024-02-16