Product Description

Product Description

COUPLINGS

HRC FCL Chain coupling GE L NM MH Torque limiter
HRC 70B FCL90 KC4012 GE14 L050 NM50 MH45 TL250-2
HRC 70F FCL100 KC4014 GE19 L070 NM67 MH55 TL250-1
HRC 70H FCL112 KC4016 GE24 L075 NM82 MH65 TL350-2
HRC 90B FCL125 KC5014 GE28 L090 NM97 MH80 TL350-1
HRC 90F FCL140 KC5016 GE38 L095 NM112 MH90 TL500-2
HRC 90H FCL160 KC6018 GE42 L099 NM128 MH115 TL500-1
HRC 110B FCL180 KC6571 GE48 L100 NM148 MH130 TL700-2
HRC 110F FCL200 KC6571 GE55 L110 NM168 MH145 TL700-1
HRC 110H FCL224 KC8018 GE65 L150 NM194 MH175  
HRC 130B FCL250 KC8571 GE75 L190 NM214 MH200  
HRC 130F FCL280 KC8571 GE90 L225      
HRC 130H FCL315 KC1571          
HRC 150B FCL355 KC12018          
HRC 150F FCL400 KC12571          
HRC 150H FCL450            
HRC 180B FCL560            
HRC 180F FCL630            
HRC 180H              
HRC 230B              
HRC 230F              
HRC 230H              
HRC 280B              
HRC 280F              
HRC 280H              

 

Catalogue

Workshop

   Lots of coupling in stock
 

 

FAQ

Q1: Are you trading company or manufacturer ?
A: We are factory.
 

Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days.
2.Production Lead-times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.

 

 

Standard Or Nonstandard: Standard
Structure: Flexible
Material: Cast Iron
Type Name: FCL
Origin: Zhejiang
Customization:
Available

|

Customized Request

China supplier FCL Couplings Flexible FCL Pin Bush Couplings for Shaft Connection

pin coupling

Can Pin Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, pin couplings can be used in both horizontal and vertical shaft arrangements. These couplings are designed to accommodate angular misalignment, parallel misalignment, and axial movement, making them versatile for various shaft orientations.

In horizontal shaft arrangements, where the shafts are aligned on the same horizontal plane, pin couplings can efficiently transmit torque while allowing for flexibility to accommodate minor misalignments and shaft movements. The pins and flexible elements in the coupling enable angular displacement and radial flexibility, ensuring smooth power transmission even if the shafts are not perfectly aligned.

In vertical shaft arrangements, where the shafts are aligned on a vertical plane, pin couplings can also be used effectively. The coupling design allows for axial movement, which is crucial in vertical applications where the shafts may experience expansion or contraction due to thermal changes or other factors. The flexible nature of pin couplings allows them to handle these axial movements without compromising the coupling’s performance.

Whether in horizontal or vertical arrangements, pin couplings are commonly used in various industrial applications, including pumps, compressors, conveyors, and other rotating machinery. They are known for their simplicity, ease of installation, and ability to provide reliable power transmission while accommodating misalignment and shaft movement.

When using pin couplings in either arrangement, it is essential to ensure proper alignment and regular maintenance to maximize their performance and service life. Additionally, considering factors like torque requirements, operating conditions, and environmental considerations will help in selecting the appropriate pin coupling for a specific application.

pin coupling

What Industries Commonly Use Pin Couplings for Power Transmission?

Pin couplings are widely used in various industries for power transmission due to their ability to accommodate misalignment and provide reliable torque transmission. Some of the industries where pin couplings are commonly employed include:

  • 1. Manufacturing: In manufacturing processes, pin couplings are used in conveyor systems, mixers, agitators, and other machinery to transfer power between motors and driven equipment.
  • 2. Pulp and Paper: The pulp and paper industry uses pin couplings in machinery such as pumps, fans, and rotary kilns for continuous power transmission.
  • 3. Chemical and Petrochemical: Pin couplings find applications in chemical processing plants, refineries, and petrochemical facilities for various rotating equipment.
  • 4. Water and Wastewater: Pin couplings are used in water treatment facilities, pumps, and blowers to transfer power efficiently.
  • 5. Steel and Metal Processing: Steel mills and metal processing plants utilize pin couplings in rolling mills, extruders, and other equipment.
  • 6. Food and Beverage: Pin couplings are employed in food processing machinery, packaging equipment, and conveyor systems.
  • 7. Mining and Quarrying: The mining industry uses pin couplings in crushers, conveyor belts, and various mineral processing equipment.
  • 8. Oil and Gas: Pin couplings are used in the oil and gas sector for pumps, compressors, and drilling equipment.
  • 9. Power Generation: In power plants, pin couplings are used in turbines, generators, and other power transmission systems.
  • 10. Construction and Heavy Equipment: Pin couplings find applications in construction machinery, earthmoving equipment, and other heavy-duty machinery.
  • 11. Agriculture: In agricultural machinery, pin couplings are used in tractors, irrigation systems, and grain processing equipment.

These are just some examples of the industries where pin couplings are commonly used. Pin couplings offer versatility, ease of installation, and reliability, making them suitable for a wide range of applications in different sectors where power transmission is essential.

pin coupling

Can Pin Couplings Handle Misalignment Between Shafts?

Yes, pin couplings are designed to accommodate a certain degree of misalignment between shafts in rotating machinery. They are considered flexible couplings, which means they can provide some degree of angular, parallel, and axial misalignment capability.

Pin couplings typically consist of two hubs, each connected to a shaft, and a central sleeve with pins that transmit torque between the hubs. The pins allow for a limited range of movement, which helps to compensate for slight misalignments between the shafts.

The angular misalignment capacity of a pin coupling is achieved through the bending of the pins. When the shafts are misaligned at an angle, the pins on one side of the coupling experience bending while those on the opposite side are in tension. The pins are designed to withstand these bending and tension forces within their elastic limits, ensuring proper functioning and longevity of the coupling.

Similarly, the pins can accommodate parallel misalignment by sliding within the pin holes of the coupling’s central sleeve. This sliding action allows the hubs to move slightly relative to each other, compensating for any offset between the shafts.

However, it is essential to note that pin couplings have limitations in terms of the amount of misalignment they can handle. Excessive misalignment beyond their specified limits can lead to increased wear on the pins and other coupling components, reducing the coupling’s effectiveness and potentially causing premature failure.

While pin couplings are suitable for applications with moderate misalignment requirements, they may not be the best choice for applications with significant misalignment or where precise alignment is critical. In such cases, more flexible couplings like gear or elastomeric couplings may be more appropriate.

Overall, when considering the use of pin couplings, it is essential to carefully evaluate the specific misalignment requirements of the application and select a coupling that can adequately accommodate those misalignments while ensuring reliable and efficient power transmission.

China supplier FCL Couplings Flexible FCL Pin Bush Couplings for Shaft Connection  China supplier FCL Couplings Flexible FCL Pin Bush Couplings for Shaft Connection
editor by CX 2023-08-11