Product Description
Product Description
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
The elastomer insert is equalizing element of coupling. It transmits torque without backlash or vibration. The elastomer insert defines the characteristics of the entire drive system. Backlash is eliminated by the press fit of the elastomer into the hubs. Through variation of the shore hardness of the elastomer insert, the coupling system can be optimized for the ideal torsional characteristics.
LT Pin Coupling Elastic Sleeve (Smooth Bushing)
Part No. | Specification | Ref. Picture | ||
d | D | L | ||
LT-8 | 8 | 16 | 10 | |
LT-10 | 10 | 19 | 15 | |
LT-12 | 12 | 24 | 28 | |
LT-14 | 14 | 26 | 28 | |
LT-18 | 18 | 35 | 36 | |
LT-24 | 24 | 45 | 44 | |
LT-30 | 30 | 56 | 56 | |
LT-38 | 38 | 71 | 72 | |
LT-45 | 45 | 85 | 88 |
ZT Pin Coupling Elastic Sleeve (Four Component Combined Elastic Sleeve)
Part No. | d | D | L | Ref. Picture |
ZT-8 | 8 | 16 | 10 | |
ZT-10 | 10 | 19 | 15 | |
ZT-14 | 14 | 28 | 27 | |
ZT-18 | 18 | 36 | 35 | |
ZT-24 | 24 | 45 | 44 | |
ZT-30 | 30 | 56 | 55 | |
ZT-38 | 38 | 71 | 72 | |
ZT-45 | 45 | 85 | 88 |
FT Pin Coupling Elastic Sleeve Ring (Splited Elastic Ring Gasket)
Part No. | d | D | L | Ref. Picture |
FT-10 | 10 | 20 | 7 | |
FT-12 | 12 | 24 | 7 | |
FT-14 | 14 | 28 | 7 | |
FT-14 | 14 | 29 | 7 | |
FT-18 | 18 | 36 | 9 | |
FT-18 | 18 | 38 | 9 | |
FT-24 | 24 | 45 | 11 | |
FT-24 | 24 | 48 | 11 | |
FT-28 | 28 | 56 | 15 | |
FT-30 | 30 | 56 | 15 | |
FT-30 | 30 | 62 | 14 | |
FT-38 | 38 | 71 | 18 | |
FT-45 | 45 | 91 | 22 | |
FT-45 | 45 | 85 | 23 |
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
More Products:
Various types of couplings rubber elastomer models are as follows:
MT rubber coupling (MT1-MT13),
GR rubber coupling (GR10-GR180),
GS rubber coupling (GS7-GS90),
T Hexagon back wheel coupling (hexagonal elasticity pad T70 ~ 210).,
the fluid coupling (YOX),
L-type claw coupling hexagonal coupling (L35-L276),
H-type elastic block (H80-H350),
NM couplings elastomer (NM50 -NM214).
HRC Coupling elastomer (HRC60-HRC280).
Gear Sleeve Rubber Coupling Elastomer cushion (gear 4J-10J).
NL inner tooth gear coupling sleeve (NL1-NL10).
Oldham and non-standard high strength Spider rubber coupling.
Main Products:
custom couplings Plum pad, HRC couplings, Martin couplings, HRC couplings supply elastomer, HRC couplings elastic block, Gear Sleeve Rubber Coupling Elastomer, block rubber supply couplings, coupling rubber parts, coupling is rubber body, ZheJiang custom rubber gear coupling, screw compressor couplings, rubber supply gear couplings, Atlas coupling, screw compressor coupling, ZheJiang wholesale production of polyurethane gear, supply H-linking couplings, H-shaped elastic block coupling, H-type coupling rubber elastomer blocks
Please inquire us if you need Rubber Coupling Elastomer and other types couplings inserts.
Different Types Of Hydraulic Seals | ||
Application | Type | Material |
Rod Seals | UN | TPU(PU,Polyurethane) |
UNS | TPU(PU,Polyurethane) | |
UHS | TPU(PU,Polyurethane) | |
IDU | TPU(PU,Polyurethane) | |
U+S | PU+NBR | |
UPH | NBR & FKM | |
Step Seal | NBR+PTFE | |
VES | Rubber+Fabric | |
IDI | PU | |
ISI | PU | |
Piston Seals | SPG | NBR+PTFE |
SPGW | NBR+PTFE | |
SPGO | NBR+PTFE | |
KDAS | NBR+PU+POM | |
ODI | PU | |
OSI | PU | |
ODU | PU | |
Dust Wiper Seals | DH/DHS | PU |
LBH | NBR & FKM | |
J/JA | PU | |
DKB | NBR & FKM +Metal | |
DKBI | PU+Metal | |
DSI | PU | |
Wear Ring | WR | Phenolic Fabric |
Xihu (West Lake) Dis. Tape | PTFE | |
Xihu (West Lake) Dis. Tape | Phenolic Fabric | |
Buffer Seal | HBY | PU+Nylon |
Back-up Ring | O-Ring | NBR & FKM |
X-Ring | NBR & FKM | |
PTFE Washer | PTFE |
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
Different Type Rotary Shaft Oil Seal | ||||
Type | Material | Lip | Spring | Feature |
TC | NBR & FKM | Double Lips | Single | Metal Coverd Rubber |
TB | NBR | Double Lips | Single | Metal Case |
TA | NBR | Double Lips | Single | Metal Case |
SC | NBR & FKM | Single | Single | Double Metal Shell |
SB | NBR | Single | Single | Metal Case |
SA | NBR | Single | Single | Double Metal Shell |
DC | NBR | Double Lips | Double | Double Springs |
VC | NBR & FKM | Single | Without | Metal Coverd Rubber |
VB | NBR | Single | Without | Metal Case |
TCV | NBR | Double Lips | Single | High Pressure |
TCN | NBR | Double Lips | Single | High Pressure |
PTFE | PTFE | Single & Double Lips | Without | Stainless steel |
HTCL | NBR & FKM | Double Lips | Single | Inside thread L |
HTCR | NBR & FKM | Double Lips | Single | Inside thread R |
…………………………………………………………………………………………… More types please contact us. Customization is welcome. |
Related Products
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
Oil seals serve to prevent the leakage not only of lubricants, but also water, chemicals, and gas from “gaps” in machinery. Oil seals also serve to prevent the intrusion of dust, soil and sand from the outside air.
Company Profile
HangZhou CZPT Sealing Sci-Tech Co., Ltd. is a scientific and technological production enterprise integrating R&D, production and sales. Our production plant covers an area of about 2,000 square CZPT and has 150 employees.
QMS (Quality Management System):
ISO9001, ISO/TS16949
Our Products:
O Ring, Oil Seal, Hydraulic & Pneumatic Seal, Custom CZPT Parts
Production Standard:
ASTMD2000
Product Application Scope:
Engineering machinery, hydraulic pneumatic, petroleum and natural gas, automobile seals, valves and pipelines, electronic home appliances, food grade, electric power, chemical industry, coal mine, metallurgy, engineering shield machine and other industries, supporting domestic automobile and machinery manufacturers.
We had sell to:
More than 40 countries including the United States, Germany, Japan, Britain, Italy, Spain, Russia, Canada, Australia, Malaysia, Philippines, Indonesia, Mexico, Brazil, Peru, Chile, Argentina, Israel, Saudi Arabia, Lebanon, Ukraine, Pakistan, Thailand, Vietnam, etc.
Packaging & Shipping
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
Ship by express, by air, by sea at buyer’s option.
rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
FAQ
Q 1. What’s the payment term?
A: We accept T/T 50% deposit and 50% balance against copy of B/L or L/C at sight, West Union,VISA,Paypal is also accepted. rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
Q 2. What is the normal lead time for product orders?
A: Generally it is 1-2 days if the goods are in stock. or it is 5-10 days if the goods are not in stock, it is according to quantity.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal
tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 3. What is your standard packing?
A: All the goods will be packed by carton box and loaded with pallets. Special packing method can be accepted when needed.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
Q 4. Could you please tell us the month capacity of your products ?
A: It depends on which model, we produce more than 2500 tons rubber materials per month.
tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 5. what kind of certificates you have ?
A1: We have been ISO9001:2008 and ISO14001:2004 certified by SGS since 2015.
A2: We have various rubber compounds approved by ROHS and REACH.
tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q6: How to check the quality of the bulk order?
A1: We provide preproduction samples before mass production for all customers if needed.
A2: We accept third party inspection such as TUV, INTERTEK, BV, etc.
tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 7: Do you use any international standards for the rubber products?
A: Yes, we mainly use ASTM D2000 standard to define the quality of the rubber materials, tolerances as per ISO3302, ISO2768, etc.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
Q8: What materials are available to produce from your side?
A: NBR, EPDM, SILICONE, FPM(FKM), NEOPRENE(CR), NR, IIR, SBR, ACM, AEM, Fluorosilicone(FVMQ), FFKM, Liquid Silicone, Sponge, etc. tc oi
l seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q9: Do you provide maintenance on tooling?
A: We maintain all tooling and will replace as needed.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q10: How many empolyees you have?
A:We have 150 empolyees at time of December 2571. tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
If you have any other question, please don’t hesitate to contact us:
LT/ZT/FT Pin Coupling PU Rubber Elastic Sleeve
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
Standard Or Nonstandard: | Standard |
---|---|
Speed: | 10000r/M |
Structure: | Flexible |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
How Do Pin Couplings Compare to Other Types of Couplings in Terms of Performance?
Pin couplings offer certain advantages and disadvantages compared to other types of couplings, and their performance characteristics can vary depending on the specific application requirements. Below is a comparison of pin couplings with some commonly used couplings:
1. Gear Couplings:
- Flexibility: Gear couplings are more rigid than pin couplings and may not offer the same level of misalignment capacity.
- Torsional Stiffness: Gear couplings provide higher torsional stiffness, making them suitable for applications requiring precise torque transmission.
- Shock Absorption: Gear couplings can handle higher shock loads due to their robust design and greater stiffness.
- Maintenance: Gear couplings may require periodic lubrication and maintenance compared to maintenance-free pin couplings.
- Applications: Gear couplings are commonly used in heavy-duty and high-torque applications where precise torque transmission is essential.
2. Flexible (Elastomeric) Couplings:
- Flexibility: Elastomeric couplings offer higher misalignment capacity than pin couplings and can handle angular, parallel, and axial misalignment.
- Shock Absorption: Elastomeric couplings provide excellent shock absorption, damping vibrations, and protecting connected equipment.
- Torsional Stiffness: Elastomeric couplings have lower torsional stiffness compared to pin couplings, making them more forgiving in high shock load applications.
- Installation: Elastomeric couplings are easy to install and require no lubrication, making them maintenance-free.
- Applications: Elastomeric couplings are commonly used in pumps, compressors, and other machinery where vibration isolation is crucial.
3. Rigid Couplings:
- Torsional Stiffness: Rigid couplings provide high torsional stiffness, ensuring accurate torque transmission.
- Misalignment Capacity: Rigid couplings have little to no misalignment capacity and require precise shaft alignment.
- Applications: Rigid couplings are used in applications where precise alignment is essential, such as shaft-to-shaft connections in high-precision systems.
Conclusion:
Pin couplings strike a balance between flexibility and torsional stiffness, making them suitable for applications with moderate misalignment and shock loads. They are often used in general industrial applications, conveyors, and light to medium-duty machinery.
When selecting a coupling for a specific application, it is crucial to consider factors such as misalignment requirements, shock and vibration loads, torsional stiffness, maintenance needs, and the level of precision required. Each coupling type has its strengths and weaknesses, and the appropriate choice will depend on the specific demands of the application.
How Does a Pin Coupling Handle Angular, Parallel, and Axial Misalignment?
A pin coupling is designed to handle different types of misalignment, including angular, parallel, and axial misalignment. The unique construction of pin couplings allows them to accommodate these misalignments without compromising the efficiency and performance of the connected equipment.
1. Angular Misalignment: Angular misalignment occurs when the axes of the driving and driven shafts are not parallel but intersect at an angle. Pin couplings can tolerate angular misalignment because of their flexible and floating pin design. The two coupling halves are connected by a series of pins, which can pivot and move within the pin holes. This flexibility allows the coupling to bend slightly, adjusting to the angle of misalignment between the shafts.
2. Parallel Misalignment: Parallel misalignment happens when the axes of the driving and driven shafts are parallel, but they are laterally displaced from each other. Pin couplings can handle parallel misalignment to some extent due to the floating nature of the pins. The pins can move laterally within the pin holes, allowing the coupling to adapt to the offset between the shafts.
3. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the axis of one shaft concerning the other. While pin couplings primarily focus on handling angular and parallel misalignment, they may offer limited axial misalignment capabilities. The floating pins provide a small degree of axial movement, but excessive axial misalignment is best avoided to prevent additional stresses on the coupling.
It is important to note that while pin couplings can accommodate some degree of misalignment, excessive misalignment should be avoided to prevent premature wear and potential failure of the coupling and connected equipment. Regular inspection and maintenance can help identify and address any misalignment issues, ensuring the optimal performance and longevity of the pin coupling in power transmission applications.
Understanding Pin Couplings and Their Functionality
A pin coupling, also known as a shear pin coupling, is a type of mechanical coupling used to connect two rotating shafts in a mechanical system. It is designed to transmit torque while allowing for a limited amount of angular misalignment between the shafts. The primary function of a pin coupling is to protect the connected equipment from torque overload and prevent damage to the shafts and other components in case of sudden shock or overload.
How a Pin Coupling Works:
A typical pin coupling consists of two hubs, one on each shaft to be connected, and a series of pins that pass through the hubs to join them together. The pins are usually made of a softer material than the hubs, such as brass or aluminum, to act as sacrificial elements. The number and size of the pins depend on the coupling’s torque rating and the required angular misalignment capacity.
When the shafts are misaligned, the pins experience shear stress as they bend under the applied load. In normal operating conditions, the pins remain intact and allow the torque to transfer from one shaft to another. However, in the event of an overload or excessive misalignment, the pins will shear off, preventing the transmission of excessive torque and protecting the connected equipment from damage.
After shearing, the damaged pins can be easily replaced, and the coupling can be put back into service without major repairs to the equipment. This feature makes pin couplings particularly suitable for applications with varying operating conditions and environments where shock loads or sudden overloads may occur.
Advantages of Pin Couplings:
– Protection against Overload: The shear pins act as a safety feature, protecting the connected equipment from excessive torque and sudden shocks.
– Misalignment Tolerance: Pin couplings can accommodate a limited amount of angular misalignment between the shafts.
– Easy Replacement: After shearing, the damaged pins can be quickly replaced, reducing downtime and maintenance costs.
– Versatility: Suitable for a wide range of applications, including pumps, compressors, and other industrial machinery.
– Cost-Effective: The sacrificial pins are cost-effective components that can be easily replaced, avoiding costly repairs to the main equipment.
Limitations:
– Pin couplings have lower torque capacities compared to some other coupling types, such as gear couplings or rigid couplings.
– The need to replace the shear pins after each failure may lead to frequent maintenance requirements in applications with frequent overloads or misalignments.
In summary, pin couplings offer a reliable and cost-effective solution for torque transmission and protection against overloads in various mechanical systems. Their ability to accommodate misalignment and absorb shock loads makes them suitable for a wide range of industrial applications.
editor by CX 2023-08-16